

Tritium Release Rate into Primary Coolant

- Data of JMTR, JRR-3M and JRR-4 -

Japan Atomic Energy Agency

E.Ishitsuka, J.Motohashi, Y.Hanawa, M.Komeda, S.Watahiki, K.Okumura, N.Takemoto

Al-Farabi Kazakh National University

A.O.Mukanova, I.E.Kenzhina, Y.V.Chikhray

Background

Element	Reactions	Core components, etc.	Release mechanism	
² H	(n, γ), 0.53mb	Coolant	Direct	
⁹ Be	(n _f , α) ⁶ He, 9.2mb	Bondlium framo	Diffusion	
	and ⁶ Li (n _t , α) , 940b	Beryllium reflector	Recoil	
		Contamination of fuel plate	Direct	
		Impurity of beryllium	Diffusion	
235U	Ternary fission 1.0×10 ⁻⁴ /fission	on components Reco	Recoil	
		Impurity of other	Diffusion	
		components	Recoil	

To study of tritium release into primary coolant for research and testing reactors, as a first step,

- Collect long term data of tritium concentration at operation of JMTR, JRR-3M, JRR-4.
- Evaluate tritium release rate

Items	JMTR	JRR-3M	JRR-4
Thermal power (MW)	50	20	3.5
Main purposes	Irradiation test, RI production, Training	Beam experiment, RI production	Activation analysis, Training
Main core components	Be, Al	Be, D ₂ O tank	Carbon, Al
Operation	30d/cy, 6cy/y	25d/cy, 6cy/y	6h/d, 4d/week

Coolant temperature < 50°C

Core of JMTR

NEW]/MUR

Core of JRR-3M

NEW.//MUR

Core of JRR-4

new]MIR

Amount of tritium release per operation cycle were estimated by assuming a linear approximation

Evaluated tritium release rate (JMTR) 🥡

new]/MUR

Evaluated tritium release rate (JRR-3M)

Element	Reactions	Reactions Core components, etc.		Contribution to tritium release	
² H	(n, γ), 0.53mb	Coolant	Direct	~1Bq/cm ³ ~0.2Bq/Wd (JMTR)	
⁹ Be	(n _f , α) ⁶ He, 9.2mb and ⁶ Li (n _t , α) , 940b		Diffusion	Small: low temp*.?	
		Beryllium frame Beryllium reflector	Recoil	? (by MCNP code**)	
²³⁵ U	Ternary fission 1.0×10 ⁻ ⁴/fission	Contamination of fuel plate	Direct	?	
		Impurity of beryllium components	Diffusion	Small: low temp*.?	
			Recoil	? (by MCNP code**)	
		Impurity of other components	Diffusion	Small: low temp*.?	
			Recoil	? (by MCNP code**)	

* : Coolant temperature < 50°C

**: MCNP6, PHITS (Particle and Heavy Ion Transport code System), GEANT₄

1. Tritium release rate

- JRR-4 : < 8 Bq/Wd
- JRR-3M : 10~95 Bq/Wd
- JMTR : 60~140 Bq/Wd [²H(n, γ)³H:~0.2Bq/Wd]
- 2. New beryllium components installation

lower tritium release rate in JRR-3M and JMTR

Calculation by MCNP code (MCNP6, PHITS, GEANT₄) will be carried out to study more details.

Appendix

Neutron spectrum of beryllium

Average of beryllium components calculated by MCNP6.

Outline of PHITS code

/							
	Neutron	Proton, Pion (other hadrons)	Nucleus	Muon	e⁻ / e+	Pho	oton
200 GeV							
	Intra-nuclea	ar cascade (JAM)	100 GeV/n	100 GeV	100 GeV	100	GeV
High	3.0 GeV (0	+ Evaporation () GEM)	Quantum Molecular	Virtual Photo-	Atomic Data	Atomic Data	Photo- Nuclear
1	Intra-nuclear c	ascade (INCL4.6)	d Dynamics (JQMD)	JAM/ JQMD	Library (EEDL /	Library	JAM/ QMD
nergy	Eva	+ aporation (GEM)	t + _{3He} Evaporation	+ GEM	ÌTS3.0 / EPDL97)	4.0 / EPDL97	+ GEM +
Ш	20 Mev		α (GEM) α 10 MeV/n	200 MeV	or	or	JENDL
→ N	Data Library	1 MeV	Ionization		EGS5	EGS5	2 MeV
o (JENDL-4.0)		1 keV	SPAR or ATIMA		1 keV	1 keV	
	10 ⁻⁵ eV	Event generator mode: Specify all secondary charged particles produced					
from lour on argun outron interaction							

from low-energy neutron interaction

Switching energies can be changed in input file of PHITS